SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: VERILOG HDL(16EC5704)

Branch & specialization: MTECH-VLSI Year & Sem: I_M.Tech & I-Sem

<u>UNIT –I</u>

HARDWARE MODELING WITH THE VERILOG HDL

1.	a) Explain structure design methodology with the verilog HDL.	[5M]
	b) Write verilog HDC structural model for a full sub tractor using NAND gates.	[5M]
2.	a) Explain hardware modeling verilog primitives.	[5M]
	b) Explain behavioral description in verilog.	[5M]
3.	Explain the following descriptive styles of system hardware with the verilog HDL	
	a) Structural description.	[5M]
	b) Behavioral description	[5M]
4.	a) Explain structured design methodology.	[5M]
	b) Explain hierarchical descriptions of hardware.	[5M]
5.	a) Discuss various descriptive styles available for hardware modeling using verilog HDL.	[5M]
	b) With neat flow graph, explain the TOP down design methodology relevant to	
	hardware modeling using verilog HDL.	[5M]
6.	a) Explain the terms "Hardware Encapsulation" and "Hardware modeling" with	
	suitable example using verilog HDL.	[5M]
	b) Describe hierarchical description of hardware modeling using verilog HDL.	[5M]
7.	a) Explain about Arrays of Instances in verilog with an example.	[5M]
	b) Write a brief notes on number representation in verilog.	[5M]
8.	a) Write a verilog program for 8x1 MUX using Structured Implicit model.	[5M]
	b) Write a verilog program for Half adder using Structured Explicit model.	[5M]
9.	a) Explain any descriptive style of system hardware with the Verilog HDL	
	with an example.	[5M]
	b) Write a brief note on language conventions in verilog.	[5M]
10.	a) Write a brief note on Hardware Modeling Verilog Primitives.	[5M]

b) Write a program using TOP down design methodology in verilog.

[5M]

<u>UNIT –II</u>

LOGIC SYSTEM, DATA TYPES AND OPERATORS FOR MODELING IN VERILOG HDL

1.	Explain in detail about verilog HDC data types with suitable examples.	[10M]
2.	a) What is user defined primitives? Explain combinational behavior of user	
	defined primitives.	[7M]
	b) Explain conditional operator, operator precedence in VERILOG.	[3M]
3.	Explain following concepts.	
	a) Verilog strings	[3M]
	b) Verilog constants	[2M]
	c) Verilog operations	[3M]
	d) Verilog variables	[3M]
4.	a) Compare the combinational behavior and sequential behavior of user	
	defined primitives.	[5M]
	b) Explain the verilog model for net delay and module paths and delays.	[5M]
5.	a) Differentiate the combinational and sequential behavior of user-defined	
	primitives for hardware modeling using verilog HDL.	[5M]
	b) Present verilog models for transport delay with relevant examples.	[5M]
6.	a) Illustrate the initialization of sequential primitives with relevant examples.	[5M]
	b) Explain the terms "Inertial delay" and "Transport delay" relevant to verilog	
	HDL models with suitable examples.	[5M]
7.	Explain following concepts with example program.	
	a) Verilog operators	[5M]
	b) Verilog variables	[5M]
8.	Explain following concepts with example.	
	a) Verilog Expressions and Operands	[5M]
	b) Verilog Data Types	[5M]
9.	a) Write a brief short note on Path Delays and Simulation.	[5M]
	b) Explain the following i) Inertial Delay Effects ii) Pulse Rejection	[5M]
10.	a) Write a brief short notes on User Defined Primitives in verilog.	[5M]
	b) Explain Built-In Constructs for Delay in verilog.	[5M]

<u>UNIT –III</u>

BEHAVIORAL DESCRIPTIONS IN VERILOG HDL

1.	a) Explain behavioral statements in verilog HDC.	[5M]
	b) Name two kinds of assignments that you can have in verilog HDC	[5M]
	model and explain them.	
2.	a) Write short notes on non-blocking assignments and what are the sequences	
	takes place at each positive edge of clock for the non-blocking assignments.	[7M]
	b) Explain behavioral models of finite state machine.	[3M]
3.	a) Write a short note on intra assignment delay.	[3M]
	b) Explain behavioral models of finite state machines.	[7M]
4.	a) How intra assignments delay control, event based timing control takes	
	place in verilog HDL?	[5M]
	b) Writ program for Moore machine in behavioral models.	[5M]
5.	a) Explain how to summarize the various delays constructs in hardware modeling	
	with the verilog HDL.	[5M]
	b) Explain the concept of 'constructs for activity flow control'. Give the	
	behavioral description in verilog HDL.	[5M]
6.	a) Explain the behavioral descriptions for simulation of simultaneous procedural	
	assignment used in verilog HDL with suitable example.	[5M]
	b) Explain the Indeterminate Assignments and Ambiguity in verilog.	[5M]
7.	a) How the timing checks can be given in system tasks in verilog.	[5M]
	b) Draw the ASM chart for the dice game and write a program in behavioral	
	models verilog HDL	[5M]
8.	a) Write short notes on Simultaneous Procedural Assignments.	[5M]
	b) What is the differences between an initial behavior and an always behavior	[5M]
9.	a) Give a Summary of Delay Constructs in Verilog.	[5M]
	b) Write a short note on Variable Scope Revisited in verilog.	[5M]
10.	Explain the following.	
	a) Procedural Continuous Assignments	[5M]
	b) Procedural Assignment	[5M]

<u>UNIT –IV</u>

SYNTHSIS OF COMBINATIONAL LOGIC

1.	a) Draw the block diagram for HDL based synthesis explain each block	[7M]
	b) Explain the tree state buffers.	[3M]
2.	a) Draw the block diagram for test bench for post synthesis design verifications.	[7M]
	b) Discuss about behavioral synthesis.	[3M]
3.	a) Explain the block in the logical synthesis.	[5M]
	b) Discuss about RTL synthesis.	[5M]
4.	a) Function of 'F" that is to be decomposed in terms of new nodes x & y the original	
	form of f is described by the Boolean equation.	[5M]
	F=ABC+ABD+ACD+BCD	
	b) What is synthesis of priority structures give one example with program?	[5M]
5.	Explain the following.	[5M]
	a) Simulation efficiency.	
	b) Procedural continuous assignments	[5M]
6.	a) Write, verify and synth size a 16 bit adder sub tractor.	[5M]
	b) Explain the synthesis of user defined function.	[5M]
7.	a) Write a program for synthesis of user defined tasks?	[5M]
	b) Write a program for synthesis of case and conditional.	[5M]
8.	a) What is synthesis of the disable statements write any one program for it.	[5M]
	b) Explain the non-blocking assignments of synthesis.	[5M]
9.	a) Draw the flow chart for synthesis of loops explain each block?	[5M]
	b) Write program for synthesis of multi cycle operations.	[5M]
10.	a) write and explain the types of timing controls in synthesis.	[7M]
	b) Explain the fork &join blocks.	[3M]

UNIT -V

SWITCH-LEVEL MODELS IN VERILOG

1. a) Discuss why switch level is useful? [5M]

PAGE-4

QUESTION BANK 20)16
b) Give the MOS transistor technology?	[5M]
2. a) Write and verify a switch level al a three input static CMOS NOR gate?	[5M]
b) Explain the true table for switch level MOSFET transistor module?	[5M]
3. a) Write and verify the switch level al JK flip flop having preset and clear input?	[5M]
b) Draw the circuit diagram of CMOS and explain it?	[5M]
4. a) Design & verify a switch level model at the four channel MOS transistor	[7M]
b) Discuss about alternative loads and pull gates?	[3M]
5. a) Explain the CMOS transmission gates with diagram?	[5M]
b) Write a test bench and simulate the behavior at the circuit in fig.	[5M]
Signal 1 Result Signal 2	
6. a) Explain the types of signal strengths?	[5M]
b) Draw & explain the circuit diagram of CMOS switch with a program.	[5M]
7. a) Discuss about Ambiguous signals?	[5M]
b) Write a program for NMOS Three input NOR gate?	[5M]
8. Explain the following.	
a) Strength reduction by primitives	[5M]
b) Transistor switch & bi-directional switch	[5M]
9. a) Design the circuit diagram for CMOS NOR gate?	[3M]
b) Implement NAND, AND, OR gates using MOS switch test it with a suitable test bench?	[7M]
10. a) Write a program for NMOS inverter with pull up loads?	[5M]
b) Implement a 4X1 mux using CMOS transmission gates?	[5M]

Prepared by: **T.PRASAD, ECE DEPARTMENT**.